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There are times when, in their haste to solve a particular problem, students (and their
instructors) miss an opportunity to notice some interesting mathematics. For example,
when calculus students are introduced to the derivatives of inverse trigonometric func-
tions, they frequently run across a classic problem that goes something like this:

There is a 6-foot tall picture on a wall, 2 feet above your eye level. How far away
should you sit (on the level floor) in order to maximize the vertical viewing angle θ?
(See FIGURE 1.)

Figure 1 Find where θ is a maximum

This problem can be solved using the standard calculus technique for maximization.
First, on the coordinate plane, we could set the top and bottom of the picture at T (0, 8)
and S(0, 2), respectively. Then it is easy to show that if your eye is at a point P(x, 0)
on the positive x-axis, the viewing angle would be θ = tan−1(8/x)− tan−1(2/x). From
the derivative,

dθ

dx
= 6(16− x2)

(x2 + 82)(x2 + 22)
,

you can easily show that the only critical number for x > 0 occurs at x = 4. Finally,
(the part that many students like to skip) the first or second derivative test can provide
arguments that θ must be an absolute maximum at P(4, 0).

At this point, many calculus students declare that the greatest viewing angle oc-
curs 4 feet from the wall, express some relief and gratitude for having solved the
problem, and move on to the next assignment. In doing so, unfortunately, they miss
some fascinating geometry. Notice that, if we let F represent the origin, then at the
point P of maximum θ , P F/F S = 2 = T F/P F (FIGURE 2). This makes �PFS and
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�TFP similar right triangles. Thus, the viewing angle is largest at the point P where
� FPS ∼= � FTP!

Figure 2 Similar triangles �PFS and �TFP

So now a mathematician starts to wonder: is this result just a coincidence (if there
is such a thing as a mathematical coincidence)? What if we change the y-coordinates
of S and T ? How about if, instead of being level, the floor were slanted and P were on
a line y = mx? (Stewart gives a numerical approach to a variation of this problem [1,
p. 478].)

Curiously enough, even in these cases the answer is that the viewing angle is a max-
imum where � FPS ∼= � FTP. (This could be a good assignment for a bright student.)
In fact, we can generalize even further and consider the case where the floor is curved
rather than straight. The result is the following:

THEOREM. Let S(0, a) and T (0, b) be points on the y-axis with a < b, and let
y = f (x) be a continuous function on [0, ∞) and, without loss of generality,
f (0) < a. Then there is point P(x, f (x)), x > 0, on the graph of f such that the
measure of � T P S is a maximum. Furthermore, if f is differentiable at P, then
� FPS ∼= � FTP, where F is the point where the tangent to f (x) at P intersects the
y-axis (FIGURE 3).

Figure 3 The generalized case

Note: In the original problem P is on the x-axis y = 0, and in the variation P is
on the line y = mx . Both times, the point F is given as the origin. This notation is
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consistent with our generalized property since, in those cases, the tangent line to the
graph of y = f (x), which is simply the graph itself, intersects the y-axis at (0, 0). Also,
when we refer to a maximum θ , or θ being maximized, we shall implicitly restrict
ourselves to the domain (0,∞).

Proof. The property that � FPS ∼= � FTP at maximum θ can be proved using stan-
dard calculus. Suppose f is differentiable at the maximum angle. We will assume for
the time being that a greatest θ exists. It is straightforward to show that, if point P has
coordinates (x, f (x)), then � T P S has measure

θ = tan−1

(
b − f (x)

x

)
+ tan−1

(
f (x)− a

x

)
.

Differentiating and simplifying, we can see that

dθ

dx
= (a − b)

[
x2 + (x f ′(x))2

]− [a − ( f (x)− x f ′(x))][b − ( f (x)− x f ′(x))]
[x2 + (b − f (x))2][x2 + (a − f (x))2] .

Since the denominator involves products of sums of perfect squares, and since f (0) is
neither a nor b, we can see that the denominator is never zero; hence, dθ/dx is never
undefined. It follows that at the maximum, the derivative must be zero. At this point
then,

x2 + (x f ′(x))2 = [a − ( f (x)− x f ′(x))] [b − ( f (x)− x f ′(x))]. (1)

All we need to do is interpret this in terms of lengths. The slope of the tangent to
f (x) at P is f ′(x). If we follow the tangent line back to the y-axis, we see that F has
coordinates (0, f (x)− x f ′(x)), as in FIGURE 4.

Figure 4 Where the tangent hits the y-axis

From (1), we see that P F2 = SF · T F, that is,

P F

SF
= T F

P F
.

Since they share a common angle and have two pairs of proportional sides, it follows
that �SFP and �PFT are similar triangles. Therefore, we can conclude that � FPS ∼=
� FTP when P is chosen to make � T P S largest.
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Geometric approach Now we turn to some more general questions: Assuming f is
continuous, not necessarily differentiable, on [0, ∞), are we guaranteed that there is a
point P where the viewing angle is greatest? If there is such a point P , is it necessarily
unique or might the maximum angle occur at more than one point on the graph? We
can answer these questions by taking a different approach to the problem. Let’s leave
calculus and its potentially messy computations and turn instead to geometry (with
just a pinch of topology).

Recall that, in a circle, the measure of an inscribed angle is one-half that of the
intercepted arc [3]. A corollary of this property is that every inscribed angle that inter-
cepts the same arc has the same measure. Conversely, given fixed points T and S and
an angle θ , the set of all points Q on one side of ST satisfying m( � SQT ) = θ is a
portion of a circle passing through S and T .

Now let’s return to our problem. Again, we let S and T represent the top and bottom
of our picture. For a fixed positive measure c, consider the set of points Q on the right
half-plane such that m( � SQT ) = c. From our discussion above, we can easily see
that this level curve is the right-hand portion of a circle passing through S and T
(FIGURE 5).

Figure 5 Level curves of constant angles

Moreover, the smaller the value of c, the farther the center of the circle is to the
right. For instance, if Q1, Q2, and Q3 are placed on the perpendicular bisector of ST
as shown in FIGURE 5, it is easy to see that m( � SQ1T ) < m( � SQ2T ) < m( � SQ3T ).
Also notice that the regions bounded by ST and these circular curves are nested: If 0 <
c1 < c2, then the region bounded by ST and the curve m( � SQT ) = c2 is contained in
the region bounded by ST and m( � SQT ) = c1.

Now we can answer the questions we posed earlier. Must there be a point P along
the graph of y = f (x) at which m( � S PT ) is a maximum? If so, where is P? The
answer to the second question is that P occurs where y = f (x) intersects the circular
arc m( � SQT ) = c for the largest value of c, that is, the leftmost curve m( � SQT ) = c
(FIGURE 6). It is probably obvious that there must be such a point; however, to be safe,
we could turn to a little topology. (If this result is obvious, feel free to skip the next
paragraph.)

Let G represent the graph of y = f (x). For each positive c, let Dc be the
closed bounded region in the right closed half-plane bounded by ST and the arc
m( � SQT ) = c. Then define Gc to be the intersection of G with Dc. Now consider
the nonempty collection A = {Gc : Gc �= ∅} of nonempty intersections of G with the
sets Dc. The continuity of f implies that G is closed; hence, each Gc is compact. Fur-
thermore, since the Dcs are nested, it follows that the Gcs satisfy the finite intersection

c© THE MATHEMATICAL ASSOCIATION OF AMERICA



VOL. 78, NO. 5, DECEMBER 2005 383

Figure 6 Where θ is maximized

property [2]. Therefore,
⋂

Gc∈A Gc �= ∅ and m( � S PT ) is a maximum at any point P
in

⋂
Gc∈A Gc.

We can see that this result is consistent with our earlier findings about similar
triangles. If the tangent to the circle at P intersects the y-axis at F (FIGURE 7) then,
since � S P F and � PT F intercept the same arc, they are congruent. Consequently,
�SFPand�PFT are similar triangles and P F/SF = T F/P F , as before.

Figure 7 Similar triangles in the general case

This geometric approach allowed us to see, without ugly computations, that there
must be a point P on G such that the viewing angle, m( � S PT ), is maximized. Fur-
thermore, an easy construction allows us to show that, depending upon G, this point
of greatest angle may occur at more than one point (FIGURE 8a). In fact, if G moves
along a section of one such circular arc, there would be an infinite number of such
points (FIGURE 8b).

We now address one final question: How do we construct such a point P? As we
showed earlier, sometimes you can find P using possibly cumbersome calculus com-
putations. In the special cases where the graph G is a line, however, we can use the
geometry of the situation to physically construct the point of maximum angle using a
compass and straightedge. In these situations the smallest circle through S and T that
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(a) (b)

Figure 8 Cases where θ is maximized at multiple points

intersects G must be tangent to G at that point. Thus, all we need to do is find this
tangent circle and determine the point P of tangency.

(a) (b)

Figure 9 (a) Constructing the point of maximum θ (b) Constructing the slant line solution

This task is especially easy if G is a horizontal line (FIGURE 9a). In this situation,
the one we started with, the smallest circle through S and T that intersects G must
be tangent to G at that point. Thus, all we need to do is find this tangent circle and
determine the point P of tangency. First we find the distance r from the perpendicular
bisector of ST to G. Next we locate the point C on the right side of this perpendicular
bisector that is r units from both S and T . The maximum angle then occurs at the
foot P of the perpendicular from C to G. Notice that, from our previous discussion,
P F/SF = T F/P F ; hence, P F = √SF · T F , so P F is the geometric mean of SF
and T F .

Now that we’ve constructed the solution for a horizontal line, the solution for the
slant line situation becomes easy. At the point of greatest angle measure, we still have
the similar triangles, so the distance from P to F is still P F = √SF · T F . We con-
structed this distance in the horizontal line case. All we need to is to construct a circle
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with center F and radius
√

SF · T F . The desired point P is the intersection of this
circle and the slant line (FIGURE 9b).
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Proof Without Words:
Alternating Sums of Odd Numbers

n∑
k=1

(2k − 1)(−1)n−k = n

n odd
n even

—–ARTHUR T. BENJAMIN

HARVEY MUDD COLLEGE
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A Short Proof of Chebychev’s Upper Bound
Kimber ly Robe r t son
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Examining π(n), the number of primes less than or equal to n, is surely one of the
most fascinating projects in the long history of mathematics. In 1852, Chebychev [3]
proved that there are constants A and B so that, for all natural numbers n > 1,

An

ln(n)
< π(n) <

Bn

ln(n)
.

Later, in 1896, with arguments of analysis, the Prime Number Theorem was proved,
showing that for n sufficiently large, A and B may be taken arbitrarily close to 1. Es-
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